Chapter 11 Problems

 Imagine a particle confined to an infinitely high walled box, between 0≤x≤a. Assume that it is prepared in a coherent superposition state described by the time-dependent wavefunction

$$\psi(t) = c_1(t)\phi_1 + c_2(t)\phi_2$$

where the coefficients satisfy the equation $c_1(t)c_1^*(t) + c_2(t)c_2^*(t) = 1$, and the functions, ϕ_n , are the particle in a box eigenfunctions

$$\phi_n = \sqrt{\frac{2}{a}\sin\left(\frac{n\pi x}{a}\right)}$$
 with $n = 1, 2,$

(a) Use the time-dependent Schrödinger equation (see Eq. (3.11)) to show that

$$c_m(t) = c_m(0)\exp(-i\varepsilon_m t/\hbar)$$

where ε_m is the energy of the eigenstate ϕ_m , with m = 1 or 2. $c_m(0)$ refers to the value coefficient $c_m(t)$ at t = 0.

- (b) Obtain an expression for $\psi(t)\psi^*(t)$ in terms of ϕ_1 and ϕ_2 .
- (c) Compare the temporal behaviour of $\psi(t)\psi^*(t)$ when $c_1(0) = 1$, $c_2(0) = 0$ and $c_1(0) = c_2(0) = 1/\sqrt{2}$. Comment on the answers that you obtain.

[Hint: Based on the expression you obtained in part (b), work out $\psi(t)\psi^*(t)$ in terms of ϕ_1 and ϕ_2 at t = 0 and $t = \pi/\omega$, where $\omega = (\varepsilon_2 - \varepsilon_1)/\hbar$.]

 (a) For a pulse with a Gaussian distribution of modes (FWHM 100 nm, centred at 800 nm) and Gaussian temporal intensity distribution, what is the minimum FWHM pulse duration that can be achieved?

(b) For a pulse of intensity $I = 10^{14}$ W cm⁻², calculate the refractive index of Ti:sapphire at 800 nm. Determine the phase delay at 800 nm after travelling through:

i. 5 mm of Ti:sapphire ($n_0 = 1.76$, $n_2 = 3.1 \ge 10^{-16} \text{ cm}^2 \text{ W}^{-1}$);

ii. 5 mm BK7 glass ($n_0 = 1.51$, $n_2 = 3.5 \times 10^{-16} \text{ cm}^2 \text{ W}^{-1}$).

3. Show that the autocorrelation function is given by $\langle \Psi(t) | \Psi(0) \rangle = \sum_{v} a_{v}^{2} g_{v}^{2} e^{iw_{v}t}$. Plot the modulus of the autocorrelation function following excitation of a wavepacket created from vibrational states centred around \bar{v} = 21, with a transform-limited Gaussian laser pulse of 40 fs duration, for

(a) a harmonic oscillator with $\omega_e = 170 \text{ cm}^{-1}$;

(b) and anharmonic oscillator with $\omega_e = 170 \text{ cm}^{-1}$ and $\omega_e x_e = 2 \text{ cm}^{-1}$.

For a Gaussian pulse, $g_v = \exp[-2 \ln 2(E_v - E_{\overline{v}})^2 / \text{FWHM}^2]$. For simplicity, assume that a_v^2 is approximately constant.