
Chapter 9 Problems 

 

1. The xyz and x’y’z’ reference frames of Figure 9.2 are respectively biased towards 

reactants and products. Can you think of an unbiased body-fixed reference 

frame? 

2. The vector hierarchy used in Figure 9.3 was k → k’ → j, j’. Redraw the figure using 

a different hierarchy k → j → k’, j’. 

3. Using theoretical methods, the authors of ref. [694] have associated a non-

adiabatic effect in the dynamics of the H + H2 reaction with product scattering 

into positive or negative “deflection angles”, see Figure 5 of that paper. 

Experimentally, positive and negative deflection angles cannot be distinguished – 

they correspond to the same scattering angle. Reactant or product polarization 

measurements, however, might allow experimental observation of the distinct 

reaction mechanisms. How? 

Hint: see Problem 2. 

4. When reaction (9.69) proceeds via mechanism a, the real PPs of reactants and 

products are those on the top row of Table 9.2. What are the values of their 

complex PPs? 

5. A diatomic molecule is in a j = 1 rotational state. Calculate its density matrix, 

knowing that its non-vanishing complex polarization moments are    
   

  ,  

  
   

      ,     
   

       ,     
   

        . Is this molecule polarized? If so, 

how? 

6. Using the data below, obtain mathematical expressions for the axial and 

rotational PDFs of the molecule of Problem 5. From the mathematical 

expressions can you tell how the molecule is polarized? 

 

  
          ,    

                               ,  
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7. In the trajectory of Figure 9.8 the internuclear axes of the reactant and product 

diatomics are oriented. But we have seen that, besides being incompatible with 

the axial portrait of Figure 9.12, this cannot happen. Show that indeed it does 

not. Hint: draw a new trajectory using reflection through the scattering plane. 

Can the new trajectory be more or less likely than the original? 

8. Use Eqs. (9.18) and (9.22) to show that the complex polarization moments of a 

density matrix satisfy 

  
   

          
   

 
 
 

Hint: Use the fact that the density matrix is Hermitian (that is,             

           
 ), and the formula239,647 

                                 

9. Chemical reactions conserve parity. This implies645 that the elements of helicity-

representation scattering matrices satisfy                      , which in 

turn implies that the density matrix of Eq. (9.36) satisfies 

                                      

 

Use this property to show that the polarization moments of ρ(θ) satisfy 

  
                 

   
    

                

Hint: Use Eq. (9.18) and the formula239,647 

                                             

10.  Combining the results of Problems 8 and 9, and noting that the symmetry 

properties obtained there are independent of whether the polarization moments 

are normalized PDDCSs, renormalized PDDCSs or PPs, we find that the intrinsic 

polarization moments of chemical reactions must satisfy 

  
   

          
   

 
 
           

   
 

 

where   
   

 stands for any of those polarization moments. Use these equalities to 

probe the following: 



(a) If k is even, then the complex polarization moments are actually real. 

(b) If k is even, then    
   

 polarization moments vanish. 

(c) If k is odd, then the complex polarization moments are actually pure 

imaginary. 

(d) If k is odd, then   
   

 and    
   

 polarization moments vanish. 

11. Conservation of parity also implies that the intrinsic rotational PDFs of chemical 

reactions must satisfy 

                      

Using this symmetry property and Eq. (9.32) – the classical expansion of 

rotational PDFs – show that the classical normalized PDDCSs satisfy 

  
               

   
    

 
 

and therefore that they also follow the rules specified in items (a-d) of Problem 

10. Hint: Use the following formula:647 

                     
       

12. Using the space-fixed frame described in Section 9.3.1.1, sketch an approach 

geometry one might observe at the start of a classical trajectory. How do the 

positions of the atoms depend on the collision parameters? 

13. Show that the         state of Eq. (9.81) is such that   
   

  . Taking into 

consideration the conditions for intrinsic PP values determined in Problem 10, 

decide how the non-vanishing extrinsic   
   

 will affect the reaction 

stereodynamics.  

14. Prove the second equality of Eq. (9.78). Hint: First, rewrite Eq. (9.79) using, for 

each mechanism, dσ/dω = (σ/2 )P( ). Next, expand Tr(ρi ρe) using Eq. (9.21) 

twice; note that the expansion coefficients of Pa( )ρa are the normalized PDDCSs 

of mechanism a, and similarly for mechanisms b and c. Finally, use this 

formula:647 

  
    

    
                               

 

     

 

     

 

15. Derive Eq. (9.84) form Eq. (9.78). Hint: Integration over   transforms the 

complex normalized PDDCSs into complex PPs, see Eq. (9.25); integration over   



averages the PPs with q ≠ 0 to zero; the remaining PPs have q = 0 and are 

therefore real, see Eq. (9.11c). 

16. This problems involves fairly long calculations requiring the values of CG 

coefficients and rotation matrix elements; the supplementary material contains a 

Maple® worksheet enabling automatic performance of all calculations. As the 

states and conditions involved can be changed by the user, this problem could be 

used for a class tutorial, with each student doing different but entirely analogous 

calculations. 

As discussed in Chapter 12, an ultracold reaction proceeds only via the partial 

wave associated with ℓ = 0. A consequence of this is that the scattering matrix 

elements are independent of reactant helicity.696 As the S elements also satisfy 

                      (see Problem 9), for small j and j’ values there are few S 

elements one needs to consider, and fewer still whose values can be 

independently varied. The problem consists in choosing arbitrary values for the 

problem parameters and then analyzing the resulting stereodynamics. 

(a) Specify the values of j and j’. (The data in the worksheet allows for 

calculations involving j ≤ 5 and j’ ≤ 5.) 

(b) Noting that ℓ = 0 condition implied j = J, decide what S elements can be 

independently varied, and then assign an arbitrary complex value to each of 

them. (The worksheet will check whether your specification allows for a full, 

unique specification of the required S elements, and then scale them so that 

σur = 10 Å2.) 

(c) Choose a reference frame for the stereodynamical analysis. 

(d) Follow the instructions in the worksheet to calculate the following: 

i. DCS of the reaction involving unpolarized reactants, dσur/dω. 

ii. Intrinsic density matrices of reactants and products. 

iii. Intrinsic real renormalized PDDCS of reactants and products and the 

associated stereodynamical portraits. 

iv. Intrinsic real PPs of reactants and products and the associated 

portraits. 

(e) From this data, rationalize the stereodynamics and comment on the 

possibilities of ICS and DCS control via reactant polarization. Hint: Think 

about the consequences of the ℓ = 0 restriction for the approach direction 



from the viewpoint of reactive collisions, and also about the consequences of  

j = J and total angular momentum conservation. 

(f) Specify a set of directions for r alignment, and then use the worksheet to 

calculate the resulting ICSs and DCSs. Are the results consistent with your 

answer to item (e)? 

(g) Use the worksheet to disentangle the independent reaction mechanisms and 

calculate the stereodynamical properties of each of them. 

(h) Rationalize the stereodynamics of the various independent mechanisms. 

Hint: Rather than thinking about the mechanisms in terms of classical 

trajectories, think about angular momentum conservation.  


