
Solutions to Chapter 4 Problems 

 

1. Derivation:                             

 

  
  

  
             

 

The electronic wavefunctions satisfy           , where Ui is the electronic 

energy of the ith state.  

N.B. Solutions differ at each set of nuclear coordinates. 

 

Now, expand the total wavefunction as the product of the electronic 

wavefunctions  i, and the nuclear wavefunctions ψi. 

       

 

 

Substitute this back into the full Schrödinger expression (1): 

  
         

  
         

 

  

Multiply by   
  such that   

     . 

  
   

  
                    

 

 

 

  
   

  
                          

   

 

Define (as in equation (4.6)) 

  

                       

         

and substitute into the previous equation to obtain equation (4.5):  

  
  

 

  
                    

 

 

       



2. Derivation: This question examines in more detail the expression containing     

noting that     
   

  
   

Substitution of this expression for TN into equation (4.6) gives: 

  

       
   

  
 
  
      

  

  
     

                   

       

Applying the relationship for the second derivative of      given in the hint, 

  

          
        

             

       

Substitute this into equation (2): 

  

     
                

            
                    

    

and for j≠i, because of the orthonormality condition for the electronic 

wavefunctions,           

  

        
  

  
       

      
  

 
             

       

We can therefore write 

  

    
  

  
            

          

which is equation (4.8), with the definitions                  and 

          
     . 

 

The expression for Fji can be re-written by applying the gradient operator to both 

sides of the electronic Schrodinger equation            : 



  

                      

         

  

                      

         

Setting the right hand sides of both equations to be equal, multiplying through by 

   
  and integrating over electronic coordinates gives:  

                                                            

     

Each term can be evaluated as follows: 

                from the definition of Fij 

                            for i ≠ j 

  

                                     
 
 

     

            
 
           

 
                  

Here, use has been made of the Hermiticity of He and the Schrodinger equation 

           .  Equation (3) therefore becomes: 

  

                         

         

This straightforwardly rearranges to  

  

     
           

     
 

          

which is equation (4.9). 

 

 

 

 



3. This is an example of a harpoon mechanism. 

Cs + Br2 → CsBr + Br 

Sometimes the Born-Oppenheimer approximation is not valid, and it is not 

possible to separate nuclear and electronic motion. Therefore, we must allow for 

coupling between the nuclear and the electronic motions; this is possible by 

viewing the coupling as a perturbation to the decoupled Born-Oppenheimer 

motion. 

In this reaction of Cs with Br2, the neutral products are formed via a harpoon 

mechanism. This involves the jump of an electron (harpoon) from the Cs atom to 

the Br2 molecule at large separations. 

This electron transfers at the crossing radius, Rc. This occurs when: 

                         

  

i.e. at the intersection between the largely repulsive covalent PES, and the 

attractive ionic PES.  

(The crossing between the ionic and covalent surfaces occurs when the 

electrostatic attraction between Cs+ and Br2
- ions compensates for the energy 

required to form the ions from the neutral species):    

            
  

      
 

     
  

      
            

 

ΔE = ICs ― EABr 

      = (3.89 ― 2.55) eV 

      = 1.34 eV = 2.15 x 10-19 J 

Inserting values for  0, the vacuum permittivity, and e, the charge on an electron, 

and solving for Rc, via equation (4), yields: 

Rc = 1.075 x 10-9 m 

= 10.75 Å 

            

  

 

     
  

                      



4. Using the variation principle: 

    
        

     
 

Ψ = c1ψ1 + c2ψ2 

                                  

 

        
           

                      

(since                ) 

 

        
    

               

 

Now, use the secular equations  

 
           
           

  
  
  
   

 
 
  

 

 
           
           

    

 

H12 = H21 

When S = 0:  

 
        

        
    

 

                  
    

 

                       
    

 

                          
     

 

Using the quadratic formula to find the roots of E: 

 

   
                   

              
  

 
 

 



   
       

 
   

 

 
    

     
                      

      

 

    
       

 
   

 

 
          

      
      

 

                   

                   

                   

  

     
     

 
   

 

 
        

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.  1 = K(R ―   ;   2   ―K(R ―   ;      K/10 (constant) 

Substituting these values into equation (5): 

    
             

 
   

 

 
                    

 

  
 
 

 

   

 

 

    
 

 
            

   

   
 

   

 

 

    
 

 
           

   

   
 

   

 

 

             
 

   
 
   

 

 

R E± 

5.0 ± 1.005K 

4.5 ± 0.510K 

4.2 ± 0.224K 

4.1 ± 0.141K 

4.0 ± 0.1K 

3.9 ± 0.141K 

3.8 ± 0.224K 

3.5 ± 0.510K 

3.0 ± 1.005K 

 

Plot a graph of these values with R on the x-axis, and E± on the y-axis. 

 



 

 

 

Next, determine the ratio         as a function of R for each associated 

eigenfunction. 
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R         

5.0 -0.0499, +20.0499 

4.5 -0.0990, +10.0990 

4.2 -0.2361, +4.2361 

4.1 -0.4142, +2.4142 

4.0 ±1.0000 

3.9 -2.4142, +0.4142 

3.8 -4.2361, +0.2361 

3.5 -10.0990, +0.0990 

3.0 -20.0499, +0.0499 

 

 

This plot shows that at large R,    is dominated by c1, and    is dominated by c2. 

 

  

 



6. The kinetic energy of the I and Br atoms at the crossing between the B and Y 

potentials is calculated from the difference between the photon energy and the 

potential energy: 

          

with the factor of hc to convert E from units of cm-1 to J.   

The reduced mass of IBr:  

  
     

      
 

  
           

          
  

                           

The relative speed of the I and Br atoms at the crossing point of the two PE 

curves is: 

      
   

   

These values and the parameters from the table can be inserted into equation 

(4.4). 

 For example, for a photon energy of 19000 cm-1, v = 992 m s-1 and P = 0.765 is 

the probability of nonadiabatic dynamics (i.e. remaining on the diabatic B-state 

potential).   

Thus, the probability of crossing from the diabatic B state to the Y state is PB/Y = 1 

– P = 0.235.   

The other values plotted in figure 4.4 can be derived in a similar way.   

N.B. the unit of Å-1 must be converted to m-1 as part of the calculation. 

 

 

 



7. For collinear reaction of F(2P3/2) + H2 the total electronic angular momentum 

quantum number is J = 3/2 (the H2 in its electronic ground state has no 

electronic angular momentum). 

 Allowed values of Ω correspond to the projections of J on the internuclear axis 

and are Ω= 3/2, 1/2.   

For the HF(X1Σ+) + H(2S1/2) products, J' = ½ and Ω' = ½, with the ' denoting 

product quantum numbers.   

For HF(a3Π) + H(2S1/2) products, Ω'HF = 0, 1 and 2 and Ω'H = 1/2 , giving possible 

values of Ω' = ½, 3/2 and 5/2.   

The adiabatic correlations are thus: 

 F(2P3/2) + H2  (Ω= ½) → HF(X1Σ+) + H(2S1/2) (Ω' = ½) 

 F(2P3/2) + H2  (Ω= 3/2) → HF(a3Π) + H(2S1/2) (Ω' = 3/2) 

 F(2P1/2) + H2  (Ω=  ½) → HF(a3Π) + H(2S1/2) (Ω' = ½) 

in accord with figure 4.11. 

Similar arguments give the correlations shown in figure 4.11 for the F + D2O → 

DF + OD reaction (treating the reaction as collinear), with the additional 

complication that the ground electronic state of OD is a 2Π state with Ω'OD = 3/2 

and ½. 

 


