Solutions to Chapter 4 Problems

1. *Derivation*: $\widehat{H}(r, R) = \widehat{T}_{N}(R) + \widehat{H}_{e}(r, R)$

$$
i\hbar \frac{\partial \phi}{\partial t} = \widehat{H} \phi \quad (1)
$$

The electronic wavefunctions satisfy $\hat{H}_e \phi_i = U_i \phi_i$, where U_i is the electronic energy of the *i*th state.

N.B. Solutions differ at each set of nuclear coordinates.

Now, expand the total wavefunction as the product of the electronic wavefunctions ϕ_i , and the nuclear wavefunctions ψ_i .

$$
\Phi = \sum_i \psi_i \phi_i
$$

Substitute this back into the full Schrödinger expression (1):

$$
i\hbar \frac{\partial[\sum_i \psi_i \phi_i]}{\partial t} = \hat{H}\left[\sum_i \psi_i \phi_i\right]
$$

Multiply by ϕ_i^* such that $\phi_i^* \phi_i = 1$.

$$
i\hbar \frac{\partial \psi_j}{\partial t} = \sum_i \langle \phi_j | \hat{T}_{\rm N} | \phi_i \rangle \psi_i + U_j \psi_j
$$

$$
i\hbar \frac{\partial \psi_j}{\partial t} = \sum_{i \neq j} \langle \phi_j | \hat{T}_{\rm N} | \phi_i \rangle \psi_i + (\hat{T}_{\rm N} + U_j) \psi_j
$$

Define (as in equation (4.6))

$$
\Lambda_{ji} = \delta_{ji} T_N - \langle \phi_j | T_N | \phi_i \rangle
$$

and substitute into the previous equation to obtain equation (4.5): $\frac{1}{2}$

$$
i\hbar \frac{\partial \Psi_{j}}{\partial t} = (T_{N} + U_{j})\psi_{j} - \sum_{i} \Lambda_{ji}\psi_{i}
$$

2. Derivation: This question examines in more detail the expression containing Λ_{ij} noting that $T_N = \frac{-\hbar^2}{2M}$ $\frac{-h^2}{2M}\nabla^2$

Substitution of this expression for T_N into equation (4.6) gives:

$$
\Lambda_{ji}\psi_i = \frac{-\hbar^2}{2M} \delta_{ji} \nabla^2 \psi_i + \frac{\hbar^2}{2M} \langle \phi_j | \nabla^2 | \phi_i \rangle \psi_i \qquad (2)
$$

Applying the relationship for the second derivative of $\psi_i \phi_i$ given in the hint,

$$
\nabla^2 \psi_i \phi_i = \phi_i \nabla^2 \psi_i + \psi_i \nabla^2 \phi_i + 2 \nabla \psi_i \nabla \phi_i
$$

Substitute this into equation (2):

$$
\langle \phi_j | \nabla^2 | \phi_i \rangle \psi_i = \langle \phi_j | \phi_i \rangle \nabla^2 \psi_i + \psi_i \langle \phi_j | \nabla^2 | \phi_i \rangle + 2 \langle \phi_j | \nabla | \phi_i \rangle \nabla \psi_i
$$

and for *j*≠*i*, because of the orthonormality condition for the electronic wavefunctions, $\langle \phi_i | \phi_i \rangle$

$$
\Lambda_{ji}\psi_i = \frac{\hbar^2}{2M}\psi_i \langle \phi_j | \nabla^2 | \phi_i \rangle + \frac{\hbar^2}{M} \langle \phi_j | \nabla | \phi_i \rangle \nabla \psi_i
$$

We can therefore write

$$
\Lambda_{ji} = \frac{\hbar^2}{2M} \left(2F_{ji} \nabla + G_{ji} \right)
$$

which is equation (4.8), with the definitions $F_{ii} = \langle \phi_i | \nabla | \phi_i \rangle$ and

$$
G_{ji} = \langle \phi_j | \nabla^2 | \phi_i \rangle.
$$

The expression for *Fji* can be re-written by applying the gradient operator to both sides of the electronic Schrodinger equation $H_e \phi_i = U_i \phi_i$:

$$
\nabla (H_e \phi_i) = H_e \nabla \phi_i + (\nabla H_e) \phi_i
$$

$$
\nabla(U_i\phi_i) = U_i \nabla \phi_i + (\nabla U_i)\phi_i
$$

Setting the right hand sides of both equations to be equal, multiplying through by ϕ_i^* and integrating over electronic coordinates gives:

$$
\langle \phi_j | \nabla U_i | \phi_i \rangle + U_i \langle \phi_j | \nabla | \phi_i \rangle = \langle \phi_j | H_e \nabla | \phi_i \rangle + \langle \phi_j | \nabla H_e | \phi_i \rangle \tag{3}
$$

Each term can be evaluated as follows:

 $\langle \phi_i | \nabla | \phi_i \rangle = F_{ii}$ from the definition of F_{ij} $\langle \phi_i | \nabla U_i | \phi_i \rangle = \nabla U_i \langle \phi_i | \phi_i \rangle = 0$ for $i \neq j$

$$
\langle \phi_j | H_e \nabla | \phi_i \rangle = \langle \phi_j | H_e | \nabla \phi_i \rangle = \langle \nabla \phi_i | H_e | \phi_j \rangle^*
$$

$$
= \langle \nabla \phi_i | U_j | \phi_j \rangle^* = U_j \langle \nabla \phi_i | \phi_j \rangle^* = U_j \langle \phi_j | \nabla \phi_i \rangle = U_j F_{ji}
$$

Here, use has been made of the Hermiticity of *H*^e and the Schrodinger equation $H_e \phi_i = U_i \phi_i$. Equation (3) therefore becomes:

$$
U_i F_{ji} = U_j F_{ji} + \langle \phi_j | \nabla H_e | \phi_i \rangle
$$

This straightforwardly rearranges to

$$
F_{ji} = \frac{\langle \phi_j | \nabla H_e | \phi_i \rangle}{U_i - U_j}
$$

which is equation (4.9).

3. This is an example of a harpoon mechanism.

$$
Cs + Br_2 \rightarrow CsBr + Br
$$

Sometimes the Born-Oppenheimer approximation is not valid, and it is not possible to separate nuclear and electronic motion. Therefore, we must allow for coupling between the nuclear and the electronic motions; this is possible by viewing the coupling as a perturbation to the decoupled Born-Oppenheimer motion.

In this reaction of Cs with Br2, the neutral products are formed *via* a harpoon mechanism. This involves the jump of an electron (harpoon) from the Cs atom to the Br₂ molecule at large separations.

This electron transfers at the crossing radius, R_c . This occurs when:

$$
V_{\text{covalent}}(R_{\text{c}}) = V_{\text{ionic}}(R_{\text{c}})
$$

i.e. at the intersection between the largely repulsive covalent PES, and the attractive ionic PES.

(The crossing between the ionic and covalent surfaces occurs when the electrostatic attraction between $Cs⁺$ and $Br₂$ ions compensates for the energy required to form the ions from the neutral species):

$$
V_{\text{ionic}} = 0 = \Delta E - \frac{e^2}{4\pi\varepsilon_0 R_c}
$$

$$
\therefore R_c = \frac{e^2}{4\pi\varepsilon_0 \Delta E} \qquad (4)
$$

 $\Delta E = I_{\text{Cs}} - EA_{\text{Br}}$

$$
= (3.89 - 2.55) \text{ eV}
$$

$$
= 1.34 \text{ eV} = 2.15 \times 10^{-19} \text{ J}
$$

Inserting values for ε_0 , the vacuum permittivity, and *e*, the charge on an electron, and solving for *R_c*, *via* equation (4), yields:

$$
R_c = 1.075 \times 10^{-9} \text{ m}
$$

= 10.75 Å

$$
\sigma = \int_{0}^{R_c} P(b) 2\pi b \, db = \pi R_c^2
$$

$$
\therefore \sigma = \pi \times 10.75^2 = 361.9 \text{ Å}^2
$$

4. Using the variation principle:

$$
\langle E \rangle = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}
$$

 $Ψ = c_1ψ_1 + c_2ψ_2$

$$
\therefore \langle \Psi | \Psi \rangle = \langle c_1 \psi_1 + c_2 \psi_2 | c_1 \psi_1 + c_2 \psi_2 \rangle
$$

$$
\langle \Psi | \Psi \rangle = c_1^2 \langle \psi_1 | \psi_1 \rangle + c_2^2 \langle \psi_2 | \psi_2 \rangle + 2c_1 c_2 \langle \psi_1 | \psi_2 \rangle
$$

(since $\langle \psi_1 | \psi_2 \rangle = \langle \psi_2 | \psi_1 \rangle$)

$$
\langle \Psi | \Psi \rangle = c_1^2 + c_2^2 + 2c_1c_2 \langle \psi_1 | \psi_2 \rangle
$$

Now, use the secular equations

$$
\begin{pmatrix} H_{11} - E & H_{12} - ES \\ H_{21} - ES & H_{22} - E \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

$$
\begin{vmatrix} H_{11} - E & H_{12} - ES \\ H_{21} - ES & H_{22} - E \end{vmatrix} = 0
$$

 $H_{12} = H_{21}$ When $S = 0$:

$$
\begin{vmatrix} H_{11} - E & H_{12} \\ H_{12} & H_{22} - E \end{vmatrix} = 0
$$

(H₁₁ - E)(H₂₂ - E) - H₁₂² = 0

$$
H_{11}H_{22} - H_{22}E - H_{11}E + E^2 - H_{12}^2 = 0
$$

$$
E^2 + E(-H_{11} - H_{22}) + (H_{11}H_{22} - H_{12}^2) = 0
$$

Using the quadratic formula to find the roots of *E:*

$$
E_{\pm} = \frac{H_{11} + H_{22} \pm \sqrt{(-H_{11} - H_{22})^2 - 4(H_{11}H_{22} - H_{12}^2)}}{2}
$$

$$
E_{\pm} = \frac{H_{11} + H_{22}}{2} \pm \frac{1}{2} [H_{11}^2 + H_{22}^2 + 2H_{11}H_{22} - 4H_{11}H_{22} + 4H_{12}^2]^{1/2}
$$

$$
E_{\pm} = \frac{H_{11} + H_{22}}{2} \pm \frac{1}{2} [(H_{11} - H_{22})^2 + 4H_{12}^2]^{1/2}
$$

$$
\langle \psi_1 | \hat{H} | \psi_2 \rangle = H_{12} = \Delta
$$

$$
\langle \psi_1 | \hat{H} | \psi_1 \rangle = H_{11} = \varepsilon_1
$$

$$
\langle \psi_2 | \hat{H} | \psi_2 \rangle = H_{22} = \varepsilon_2
$$

$$
\therefore E_{\pm} = \frac{\varepsilon_1 + \varepsilon_2}{2} \pm \frac{1}{2} [(\varepsilon_1 - \varepsilon_2)^2 + 4\Delta^2]^{1/2} \tag{5}
$$

5. $\varepsilon_1 = K(R-4);$ $\varepsilon_2 = -K(R-4);$ $\Delta = K/10$ (constant) Substituting these values into equation (5):

$$
E_{\pm} = \frac{K(R-4) - K(R-4)}{2} \pm \frac{1}{2} \Biggl\{ [K(R-4) + K(R-4)]^2 + 4\left(\frac{K}{10}\right)^2 \Biggr\}^{1/2}
$$

$$
E_{\pm} = \pm \frac{1}{2} \Biggl\{ [2K(R-4)]^2 + \frac{4K^2}{100} \Biggr\}^{1/2}
$$

$$
E_{\pm} = \pm \frac{1}{2} \Biggl[4K^2(R-4)^2 + \frac{4K^2}{100} \Biggr]^{1/2}
$$

$$
E_{\pm} = \pm K \Biggl[(R-4)^2 + \frac{1}{100} \Biggr]^{1/2}
$$

R	E_{+}
5.0	± 1.005K
4.5	± 0.510K
4.2	± 0.224K
4.1	$\pm 0.141K$
4.0	\pm 0.1K
3.9	$\pm 0.141K$
3.8	± 0.224K
3.5	$\pm 0.510K$
3.0	± 1.005K

Plot a graph of these values with R on the x -axis, and E_{\pm} on the y -axis.

Next, determine the ratio $|c_1/c_2|$ as a function of *R* for each associated eigenfunction.

$$
\begin{pmatrix}\nH_{11} - E & H_{12} \\
H_{12} & H_{22} - E\n\end{pmatrix}\n\begin{pmatrix}\nc_1 \\
c_2\n\end{pmatrix} = \begin{pmatrix}\n0 \\
0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n\varepsilon_1 - E_{\pm} & \Delta \\
\Delta & \varepsilon_1 - E_{\pm}\n\end{pmatrix}\n\begin{pmatrix}\nc_1 \\
c_2\n\end{pmatrix} = \begin{pmatrix}\n0 \\
0\n\end{pmatrix}
$$
\n
$$
(\varepsilon_1 - E_{\pm})c_1 + \Delta c_2 = 0
$$
\n
$$
(\varepsilon_1 - E_{\pm})c_1 = -\Delta c_2
$$
\n
$$
\frac{c_1}{c_2} = -\frac{\Delta}{\varepsilon_1 - E_{\pm}}
$$
\n
$$
\frac{c_1}{c_2} = \frac{\Delta}{E_{+} - \varepsilon_1}
$$

$$
\frac{c_1}{c_2} = -\frac{K/10}{K(R-4) \pm K\left[(R-4)^2 + \frac{1}{100} \right]^{1/2}}
$$

$$
\frac{c_1}{c_2} = -\frac{1}{10\left\{(R-4) \pm \left[(R-4)^2 + \frac{1}{100}\right]^{1/2}\right\}}
$$

This plot shows that at large *R*, ψ_+ is dominated by c_1 , and ψ_- is dominated by c_2 .

6. The kinetic energy of the I and Br atoms at the crossing between the B and Y potentials is calculated from the difference between the photon energy and the potential energy:

$$
KE = hv - h c E
$$

with the factor of *hc* to convert *E* from units of cm-1 to J*.*

The reduced mass of IBr:

$$
\mu = \frac{m_{\text{I}} m_{\text{Br}}}{m_{\text{I}} + m_{\text{Br}}}
$$

$$
\mu = \frac{126.9 \times 79.9}{126.9 + 79.9} u
$$

$$
\mu = 49.029 u = 8.144 \times 10^{-26} \text{ kg}
$$

The relative speed of the I and Br atoms at the crossing point of the two PE curves is:

$$
v = \sqrt{\frac{2KE}{\mu}}
$$

These values and the parameters from the table can be inserted into equation (4.4).

For example, for a photon energy of 19000 cm⁻¹, $v = 992$ m s⁻¹ and $P = 0.765$ is the probability of nonadiabatic dynamics (*i.e.* remaining on the diabatic B-state potential).

Thus, the probability of crossing from the diabatic B state to the Y state is $P_{\rm B/Y}$ = 1 $-P = 0.235$.

The other values plotted in figure 4.4 can be derived in a similar way.

N.B. the unit of \AA ⁻¹ must be converted to m ⁻¹ as part of the calculation.

7. For collinear reaction of $F(^{2}P_{3/2}) + H_2$ the total electronic angular momentum quantum number is $J = 3/2$ (the H_2 in its electronic ground state has no electronic angular momentum).

Allowed values of Ω correspond to the projections of *J* on the internuclear axis and are $Ω = 3/2$, $1/2$. For the HF(X¹ Σ ⁺) + H(²S_{1/2}) products, *J'* = ½ and Ω' = ½, with the *'* denoting product quantum numbers. For HF($a^3\Pi$) + H($^2S_{1/2}$) products, Ω'_{HF} = 0, 1 and 2 and Ω'_{H} = 1/2, giving possible

values of $\Omega' = \frac{1}{2}$, 3/2 and 5/2.

The adiabatic correlations are thus:

 $F(^{2}P_{3/2}) + H_{2}$ ($\Omega = \frac{1}{2}$) \rightarrow HF(X¹\Z⁺) + H(²S_{1/2}) ($\Omega' = \frac{1}{2}$)

 $F(^{2}P_{3/2}) + H_{2}$ ($\Omega = 3/2$) \rightarrow HF(a^{3} II) + H($^{2}S_{1/2}$) ($\Omega' = 3/2$)

$$
F(^{2}P_{1/2}) + H_{2} (\Omega = \frac{1}{2}) \rightarrow HF(a^{3}\Pi) + H(^{2}S_{1/2}) (\Omega' = \frac{1}{2})
$$

in accord with figure 4.11.

Similar arguments give the correlations shown in figure 4.11 for the F + $D_2O \rightarrow$ DF + OD reaction (treating the reaction as collinear), with the additional complication that the ground electronic state of OD is a ²Π state with $\Omega'_{\text{OD}} = 3/2$ and ½.