Tutorials in Molecular Reaction Dynamics

Department of Chemistry University of Oxford

     1.  Imagine a particle confined to an infinitely high walled box, between 0≤xa. Assume that it is prepared in a

          coherent superposition state described by the time-dependent wavefunction

                                                           

          where the coefficients satisfy the equation  and the functions 𝜙n​, are the particle in a box

          eigenfunctions

                                                       

          (a) Use the time-dependent Schrödinger equation (see Eq. (3.11)) to show that

                                                           

               where εis the eigenstate of , with = 1 or 2. cm(0) refers to the value coefficent cm(t) at t = 0.

          (b) Obtain an expression for ψ(t)ψ*(t) in terms of 𝜙and 𝜙2.

          (c) Compare the temporal behaviour of ψ(t)ψ*(t) when c1(0) = 1, c2(0) = 0 and c1(0) = c2(0) = 1/√2.

               Comment on the answers that you obtain.

          [Hint: Based on the expression you obtained in part (b), work out ψ(t)ψ*(t) in terms of 𝜙1 and 𝜙2 at t = 0

          and t = ​π/ω, where ω = (ε2ε1)/ħ.]

 

     2.  (a) For a pulse with a Gaussian distribution of modes (FWHM 100 nm, centred at 800 nm) and Gaussian

               temporal intensity distribution, what is the minimum FWHM pulse duration that can be achieved?

          (b) For a pulse of intensity I= 1014 W cm-2, calculate the refractive index of Ti:sapphire at 800 nm. Determine

               the phase delay at 800 nm after travelling through:

               i.  5 mm of Ti:sapphire (n0 = 1.76, n2 = 3.1 x 10-16 cm2 W-1);

               ii. 5 mm BK7 glass (n0 = 1.51, n2 = 3.5 x 10-16 cm2 W-1).

 

     3.  Show that the autocorrelation function is given by . Plot the modulus fo the 

          autocorrelation function following excitation of a wavepacket created from vibrational states centred around 

           = 21, with a transform-limited Gaussian laser pulse fo 40 fs duration, for

          (a) a harmonic oscillatior with ω= 170 cm-1

          (b) an anharmonic oscillator with ωe = 170 cm-1 and ωexe = 2 cm-1.

          For a Gaussian pulse, . For simplicity, assume that av2 is approximately

          contstant.

 

          Above Problems are available as a PDF to print

 

          Solutions to Chapter 11 Problems