Tutorials in Molecular Reaction Dynamics

Department of Chemistry University of Oxford

     The following solutions are fully worked through in a PDF that is available to print.

 

     1.  Derivation of Eqn (4.5).

          Use the Hamiltonian expression:

                                                               

          The electronic wavefunctions satisfy , where ​U​i​ is the electronic energy of the i th​ state.

           N.B. Solutions differ at each set of nuclear coordinates.

           Now expand the total wavefunction as the product of the electronic wavefunctions, ​i​, and the 

           nuclear wavefunctions, ψi.

                                                                   

           Substitute this back into the full Schrödinger expression (1):

                                                           

           Multiply by  such that 

                                                         

                                                     

            Define (as in Eqn (4.6))

                                                           

 

            and substitute into the previous equation to obtain Eqn (4.5):

                                                           

 

 

     2.  Derivation of eqn (4.9). This particular question examines in more details the expressions containing Λij noting

          that .

          Substitution of this expression for TN into eqn (4.6) gives:

                                                    

          Applying the relationship for the second derivative of  given in the hint,

                                                  

          Substitute this into equation (2):

                                          

          and for ​j≠i​, because of the orthonormality condition for the electronic wavefunctions, 

                                                     

          We can therefore write

                                                                 

           which is eqn (4.8), with  and .

           The expression for ​F​ji​ can be re-written by applying the gradient operator to both sides of the Schrödinger

           equation :

                                                            

                                                             

           Setting the right hand sides of both equations to be equal, multiplying through by  and integrating over

           electronic coordinates gives:

                                                      (3)

           Each term can be evaluated as follows:

            from the definition of F​ij

​               for i≠j

                                                         

                                                      

            Here, use has been made of the Hermicity of He and the Schrödinger equation .

            Equation (3) therefore becomes:

                                                              

            This can be straightforwardly rearranged to 

                                                                   

            which is eqn (4.9) (QED).

 

 

     3.  This is an example of a harpoon mechanism.

Cs + Br2 → CsBr + Br

          Electron transfer occurs at ​R​c​, where:

   Vionic(Rc) = V​covalent(R​c)

          Using the equation

                                                                       

           Rc = 10.75 Å

           ∴ σ​ = 361.9 Å2

 

 

     4.  Use the variation principle:

                                                                        

          Solve the secular equation

                                                            

          by setting its determinant equal to zero.

          The answer you should obtain for the two lowest energy levels is:

                                                            (4)

 

 

     5.  Substitute the values given into expression (4) to give (after rearrangement):

                                                              

          Using this equation, evaluate the two lowest energy levels for the required values of R​ to give:

          

R E±
5.0 ± 1.005K
4.5 ± 0.510K
4.2 ± 0.224K
4.1 ± 0.141K
4.0 ± 0.1K
3.9 ± 0.141K
3.8 ± 0.224K
3.5 ± 0.510K
3.0 ± 1.005K

 

           Plot these data points to yield a graph that looks like this:

           

 

            Next, determine the ratio of |c​1/​c​2| as a function of R​ for each associated eigenfunction. This ultimately

            yields the expression:

 

            after substitution of the values for H​11​, H​22​, and H​12,E± and ε1 into the secular equation (see the PDF for

            fully worked solutions).

            Then, substitute the values E± and ε1 ​for the expressions provided in the question to obtain:

 

            Use this equation to evaluate |c​1/​c​2| as a function of R to produce the following table:

R |c​1/​c​2|
5.0 -0.0499, +20.0499
4.5 -0.0990, +10.0990
4.2 -0.2361, +4.2361
4.1 -0.4142, +2.4142
4.0 ± 1.000
3.9 -2.4142, +0.4142
3.8 -4.2361, +0.2361
3.5 -10.0990, +0.0990
3.0 -20.0499, +0.0499

 

              Plot these data points to yield a graph that looks like this:

             

 

 

     6.  The kinetic energy of the I and Br atoms at the crossing between the B and Y potentials is calculated from

          the difference between the photon energy and the potential energy:

KE = hν – hcE

          with the factor of hc​ to convert E​ from units of cm-1 to J.

          The reduced mass of IBr is: µ = 49.029 ​u​ = 8.144 x 10-26 kg

          The relative speed of the I and Br atoms at the crossing point of the two potential energy curves is:

                                                                           

          These values and the parameters from the table given can be inserted into eqn (4.4).

 

          ​For example​, for a photon with energy = 19000 cm-1,  ν​ = 992 m s-1 and P​ = 0.765 is the probability of

          nonadiabatic dynamics (i.e. remaining on the diabatic B-state potential).

          Thus, the probability of crossing from the diabatic B state to the Y state is ​P​B/Y = 1 – P​ = 0.235.

          The other values plotted in figure 4.4 can be derived in a similar way.

          N.B. the unit of Å-1 must be converted to m-1 as part of the calculation.

 

 

     7.  For the collinear reaction of F(2P3/2) + H2 the total electronic angular momentum quantum number is J​ = 3/2

          (the H​2​ in its electronic ground state has no electronic angular momentum).

          Allowed values of Ω correspond to the projections of ​J​ on the internuclear axis, and are Ω = 3/2, 1/2.

          For the HF(X​1Σ+) + H(​2S​1/2) products, J'​ = 1/2, with the '​ denoting product quantum numbers.

          For HF (a3Π) + H(2S​1/2) products, Ω'HF​ = 0, 1 and 2, and Ω'H​ = 1/2, giving possible values of Ω' = 1/2, 3/2

          and 5/2.

          

          The adiabatic correlations are thus:

          F(2P​3/2) + H​2​ (Ω = 1/2) → HF(X1 +) + H(2S​1/2) (Ω'​ = 1/2)

          F(2P​3/2) + H​2​ (Ω = 3/2) → HF(a​3Π) + H(2S​1/2) (Ω'​ = 3/2)

          F(2P​1/2) + H​2​ (Ω = 1/2) → HF(a​3Π) + H(2S​1/2) (Ω'​ = 1/2)

          in accord with figure 4.11.  

 

          Similar arguments give the correlations shown in figure 4.11 for the F + D2O → DF + OD reaction (treating the 

          reaction as collinear), with the additional complication that the ground electronic state of OD is a 2Π state with 

          Ω'OD = 3/2 and 1/2. 

 

 

          Return to Problem Set